IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On the interrelation between the solutions of the mKP and KP equations via the Miura

transformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 4315
(http://iopscience.iop.org/0305-4470/24/18/018)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 11:22

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen, 24 (1991} 4315-4324. Printed in the UK

On the interrelation between the solutions of the mkr and kp
equations via the Miura transformation

V G Dubrovsky and B G Konopelchenko
Institute of Nuclear Physics, Novosibirsk 90, 630090, USSR

Received 22 April 1991

Abstract. It is shown that the classes of exact solutions with functional parameters and
rational solutions of the modified Kadomtsev-Petviashvili {(mkP) equation and the
Kadomtsev-Petviashvili (KP) equation are connected by the (2+1)-dimensional Miura
transformation. The correspondence between more particular classes of solutions of the
mKP and the Kp equations via the Miura transformation is established.

1. Introduction

The Miura transformation [1] between the modified Korteweg—de Vries (mkdv) and
the Korteweg-de Vries (Kav) equations has played an important role both in the
discovery of the inverse scattering transform (1sT) method [2] and in the further
understanding of the properties of these equations (e.g. see [3-5]). It reveals a deep
interrelation between the algebraic properties of the mKdv and kdv equations.and their
hierarchies [3-5].

The (2+ 1)-dimensional integrable generalizations of the xdv and mkdv equations
are given by the well known Kadomtsev-Petviashvili (kp) equation

U+ U +6UU +30%97' U, =0 (1)
and the modified kr {mkP) equation
‘/;+ Vxxx_30.2(%V2Vx_ ‘/xa;lvv +5;1‘/\v)=0 (2)

which has been introduced within the different approaches in [6,7]. Here o= +1.
The mkP and kp equations are connected by the (2+ 1)-dimensional generalization of
the Miura transformation. Namely, if the function V obeys the mxp equation (2) then
the function

U=—-30%;"V,~oV,—50°V? (3)

obeys the kp equation [6, 7]. Similar to the (1+ 1)-dimensional case the Miura transfor-
mation (3) deeply interrelates the algebraic structures associated with the mkp and kp
equations [8].

In the present paper the properties of the classes of exact solutions of the mkr and
the xp equations under the Miura map (3) are studied. We will show that the solutions
of the mkp equation (2) with functional parameters are converted under the map (3)
into the solutions of the Kp equation (1) with, essentially, the same functional param-
eters. The Miura map (3) transforms the rational solutions of the mkP equation into
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the rational solutions of the Kp equation. The interrelation between the plane solitons,
decreasing and plane lumps, non-singular and singular, real and complex solutions of
the mkp and KP equations are established. Both of the cases ¢>= -1 and o®=+1 are
considered.

2. General formulae

The classes of exact solutions of the kp equation, including solutions with functional
parameters, plane solutions, singular rational solutions and fumps, are well known
{e.g. see [3,5]). For the mkP equation similar classes of exact solutions have been
constructed recently in [9]. All the details about the properties of the solutions of the
ke and mkp equations can be found in these papers.

The correspondence between the solutions of the mkP and kr equations can be
established directly in terms of V and U with the use of the map (3). But it is more
convenient and transparent to do this using the mkp eigenfunction y. The first linear
probiem for the mkP equation (2) is of the form [9]

oy, t i, taVy, =0 (4)
The eigenfunction x(x, y, t; A) relevant for the formulation and solving the inverse

spectral problem for the mxp equation is introduced via [9]

def ix y
fe! —+—].
v x oxp e L) (5)

It obeys the equation
oV 24
ny+xn+%x+avxx+fxx=0‘ (6)

The function x(x, y, t; A} can be canonically normalized {x ;- 1) and the reconstruc-
tion formula for the potential V is of the form [9]

2 4
Vix, y, f)=—;a—xlnXa (7

where y, is the first of the coefficients of the Taylor series expansion of y near the origin:
x(x, 3, 65 A) = xolx, 3, D+ Ax(x p, D+ x0(x 0+ (8)

The equations of the inverse problem for (6} have the wide classes of exact solutions
which give rise via (7) to the classes of exact solutions of the mkP equations [9].

Formula (7) is very convenient for the analysis of the Miura map (3}. Substituting
{7) into (3}, one easily gets

Co{xe )y Hxs e ' (9)

U= =
Xo

which clearly demonstrates that U is, indeed, the solution of the kp equation. Moreover,
using the relation

Txoy t Xoo T 2ix1x HioVx, +oVye =0 {10)
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which arises from the substitution of expansion (8) inte (6), one can transform the
rHs of (9} into the simpler form. Namely,

U=—2ii(ﬁ). (11)
ax \ Yo

This formula gives us a simple way for calculating the solutions of the kp equation
using the known functions y, and y, for the mKP equation.

It is easy to see that the Miura map (3) transforms the real-valued solutions of the
mKP-1 equation {o =1i) into the complex-valued solutions of the kpr equation (o =1i)
while in the case o =1 the Miura transformation (3} connects the real-valued solutions
of the mkP and ke equations. The Miura transformation (9} maps the non-singular
solutions of the mkp equation into the non-singular solutions of the kp equation.

3. Correspondence between the solutions with functional parameters and
rational solutions

The most general classes of exact solutions of the mkP equations include the solutions
with functional parameters and rational in x-, y-, t-solutions. Here we will consider
the correspondence between them.

The solutions of the mkp equation with functional parameters are of the form [9]

2 -
V=-2 In(det A4 (12)
o §x
where
] —1
Ay = 5ka—“2“i€5‘x E
. (13)
A.k.' = Sk.l +5{ 6§l§mk
and
xo=det(AA™Y) xi=tr{BA™") (14)
where )
By, = iaxA.kl =16 M- (15)
Here £.(x, y, 1) and n,{x, y, ) are the solutions of the linearized mkxP equation
£+ b t3070, 6, =0 (16)
of the form
( =| | dAndX fi(A,R)ex (i—’f+i+ﬂ)
Lix, )= A kLA, A) €XD PPTEANE
[
(17)

—| [ drndRgr Tyex (if+ y +ﬂ)
7?1(3‘7,}’, !)_ A gk H] € p A U}\: ,\3
C
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where fi{A, 3) and g,.(A, 1) are arbitrary complex functions. The integral 97’ in (13),
{14} is defined in such a way that russ of (13) and (14) exist.
Now let us apply the Miura transformation to the solutions (12). Formula (11) gives

8 u(AA")

ax det(AA™"Y (18)

Note that the matrices A, A™', 1- AA™' ~ A ,A"" and 1 — AA™" have rank one. For rank
one matrices one has the well known identity
det(l+ F)=1+tr F. (19)

Using (19) and another well known matrix identity,
d
—Indet F=tr{F.F™") (20)
0x

one gets

t(A,A7")  det1+A,A7")—1
det(AA™") det{AA™")
=det[1-(1-AA"' —A A7 ")]~det[1-(1—AA™")]

. n 3 .
=tr{A,A”")=—1In det A. (21)
ax

So we finally obtain the solutions of the kp equation

2

3 -
U=2$ln det A {22)

with the functional parameters, where A is given by (13). Formula (22) after the
identification

& =& NET = Tix (23)

exactly coincides with the known formula for the solutions of the kp equation with
functional parameters {e.g. see [3]).

The linear parts of the kP and the mkP gquations coincide. So, the same set (up to
the change (23)) of solutions of the linear equation (16) parametrize the classes of
exact solutions (12} and (22) of the mkP and KP equations, respectively. The Miura
map (3) connects these classes of solutions without, in essence, changing the parameters
& and 7.

A similar situation takes place for the rational solutions. The general rational
solutions of the mkp equation are of the form [9]

2 3 -
V=—=—Indet(AA™") (24)
o ax
where
2y 12t iA]
= x——=+S+y)+(1-8,)——
Ay 6“()( 6, A YA) ( “)/\k_M

. (25}
Akf = Ak;+iAf
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and
Xo=det(AA™") xi=itr(£A™YH (26)

where &,=1(k,/=1,..., N).
The Miura map (3) converts the solutions (24) into the following solutions of the
KP equation:

.0 w(BATH
ax det(AA™")’
Taking into account that the matrices 1—AA™'—%A~' and 1 — AA™" have rank one,
and using the identities (19}, (20), similar to the previous case, one gets

(27)

U=2-L(24). (28)
ax

Finally, using the properties of matrix A (in particular, (A~ﬂq)x = 8,,), one obtains
2

3 ~
U=2—Indet A (29)
ox
where A is given by (25), i.e.
- 2iy 12t ) .
Ay=8y|l x——+—+ +i(l1—6y) —/———. 30
ki kr( A Ai Vi ( wr) /\;_1—/\21 (30)

The formulae (29), (30) coincide with the well known formulae for the rational solutions
of the kP equation (up to A, = A.') (see [3]).

4. Correspondence between particular classes of solutions: the o =i case

Now we will consider more particular classes of solutions, including the real and

non-singular solutions.
We start with the case o =i(¢”=—1). The real non-singular plane solitons of the
mKP-1 equation are given by formuta (12) with [9]

& =-2i Ryexp(F(A;)) me=—2i exp(= F(Ay)) (31)
where
ix iy dit
ImR,=0 d FA ¥ —=———=+—.
m R, an (A) Rt

It is not difficult to show, using (22), that the real non-singular plane solitons of the
mKP-I1 equations are transformed into complex non-singular plane solitons of the kp.1
equation. In particular, the simplest mkr-1 soliton [9]

8(A,/|A[) sign R

V=—— : - 32
T+ [e + (An/ A, )sign R) e’ I 62

is converted into the complex non-singular soliton of the xp-1 equation:
8(sign R)AA, (33)

U= ‘ .
[A['le™ -+ (A/A,)e’ sign R]?



4320 V G Dubrovsky and B G Konopelchenko

where
2f =ix(AT' = AT —iy(A TP = A7)+ 4ir(AT =1 ) +1n|R|. (34)

The well known plane real-valued non-singular solitons of the kr.1 are connected via
the Miura transformation (3) with the complex non-singular plane solitons of the mke-1
equation. In particular, the well known one-soliton solution of the kp.1 equation

LY S (35)
~[A]* cosh? £
is obtained from the complex non-singular soliton
47 1
V= - (36)

T A[APR [e7 +(A/A) e/ Jcosh £

of the mkp-1 equation, where f is given by (34).

The solutions of the mkp-1 equation of the breather type, constructed in [9] are
converted by the Miura transformation into the periodic in x- or y-solutions of the
KP-I equation. In particular, the complex breather-type solution of the mxp-1 equation
which can be obtained by the technique of the work [9] is of the form

o . (1—e’ sin /AP +{¥/AZAD(AL+ AT cos® @)

V=2i—In = = - - 37
Yox 1+(2e X%/ Ag|A]?) sin @ + A% ¥ /ARAT 67
where
4ApA
=- MR|4 ' y+1n|AR]
24 8(A%R —3AgADNM (38)
x _
o= IAT“ 4B MGR L +arg(RA)

and R, some complex constant, is transformed into the following real solution of the
KP.1 equation:

& e’ sin <p)2 e L, ]
U=2—In|}|1- + Ag+Ajcos . 39
axz [( ’\R ’\2R’\?( R 1 ‘P) ( )
The solution (39) is the real-valued, non-singular solution of the kp.1 equation decreas-
ing at y — %00, and has a periodic wave character in x, f.
Another complex breather-type solution of the mkp-1 equation which can be obtained
by the technigue of [9] is of the form

Ny : ) L g
V=2|a—ln{(l+ae’cos¢+(‘—2)—*a*e2’)
x

16w, v,
a ,{vz: ; LS a’ 2 -
x| 1+=e/|Ze¥+—e ¥ |+—e (40)
2 vy vy 4

where

1 1 1 1
ren=x(-) -+ (i)

. (L_L)
elyr=y i
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and a, some real constant, is converted by the Miura transformation into

2

] +
Ulx,y, 1) = 2—ln(1+ae cos<p+a Me ) (41)
16 v,

This real, non-singular, periodic in y and soliton type in the (x, t) solution of the KP-1
equation has been found in [10].

5. The correspondence between the lumps (o =i)

The K P.1 equation possesses real decreasing lumps (see [3, 5]) while the mkp-t equation
has both real decreasing lumps and real plane tumps [9].

(i) The real decreasing lumps of the mkp-1 equation are given by the formula (24)
with [9]

N=2n Awei =X
(42)

'y-——ﬂ+c Y, -=—iﬁ+5
i 2 n+i 2 ]
where A; (i=1,2,..., n) are arbitrary isolated points outside the real axis and ¢ are
arbitrary constants.
It is not difficult to see that the corresponding rational solutions (29), (30) of the
KP-I equation are complex and non-singular. In particular, the real non-singular
decreasing lump of the mkPr.1 equation [9]

2AXT+2A XA — A Pad/ A3

" (XF+IAPA/ 4R+ (/DX + (/2 X T )
where
X = x-—%\X+lA2—I+ c
c=cptig
is converted into the complex non-singular decreasing rational solution
C|APAR/AT 22X -2 X2+ 205 - 200 X - 21X (44)

CAIXPHAP AR HIL(A/ )X+ (A/2) X 1

of the kp-1 equation.
(ii} The real plane lumps of the mkP-1 equation are given by (24), (25) where [9]

iA;
Ima;=0 ‘y,-=—l?+c, Ime =0 (i=1,...,N).

They are mapped by the Miura transformation (3) into the complex plane non-singular
rational solutions of the Kp-1 equation. For instance, the simplest plane lump of the
mKP-| equation
~ 2a
C(x=2y/a+12t/a’+x,) + a’/4

(45)
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where ¢ is an arbitrary real constant is converted to the complex plane non-singular
lump: .
a?fd—(x=2y/a+12t/a®+ xo)* + ai(x —2y/a + 12t/ a®+ xg)

U=2 [(x—2y/a+12t/a’+ X2+ a*/4T

(46)

(iii) Finally one can show that the real decreasing lumps of the kp-1 equations
[3, 5] are obtained by the Miura transformation (3) from the complex rational non-
singular solutions of the mkp.1 equation. In particular, the complex solution

. X+X X+ X —2iAg )
V=2i - — a7
(|X|2+|A|“/4A$ |X [P+ A} 44] — AP —i(AX +AX) (47)
where
2y 12t
X=x——y+-——2—+c
A A
of the mke.1 equation is transformed into
A Ai-2Xx?-2X?
LY "

(X +[Af74A0y

that is, the well known real decreasing lump of the kp-1 equation [3, 5].

6. The o =1 case

In this case the real-valued solutions of the mkp-11 equation are transformed by the
Miura map into the real-valued solutions of the k.11 equation.

(i) The real plane solitons of the mkp.11 equation are given by the formulae (12),
(13) with

& =-2iR, exp(F(iay))

m=—2B8;" exp(~F(iB1))
where R,, ,, B, are arbitrary real constants. It is easy to see that the corresponding
solutions of the kp-11 equation are given by (22) with
i s 2R, explx(ay' = Bn ) -y = BL0) — 4’ = B.)]
e Balay'-B,")
which exactly coincides with the formula for the multisoliton solutions of the Kp-11

equation (with a,'=>A,) [3]. In particular, the simplest real soliton of the mxp-11
equation [9]

(49)

(50)

_2(01 -B) £
aB®  (e7—(a/B)ee’ Ne —ee’)

V= (51)
where

2f=(a' -8 Nx—(a =B )y—dt(a” -7 +In2

g=si n( R )

7
P (52)
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is converted into the well known real plane soliton of the kp-11 equation:

-~

U=%(é—é)2 coshvz(g) (53)

fm=x(r:t'I -B™h —y(a_l—,B_z)—4!(&‘3—Bﬁ3)+1n2—Ra. (54)
Bla=-p)

The function (53) is non-singular not only for those values of parameters «a, 8, € (¢ <

0, a/B>0) as for the mkp-11 plane soliton (51) but also for £ >0, a/ B <0 for which

the soliton (51) is the singular one. The properties of the kp-11 plane solitons are quite

different in these two cases. Namely, the soliton (53) at £ > 0, o /B8 < 0 (type I) possesses

at o = — g the non-trivial (1+1)-dimensional limit

where

2 Sfe -
UKdv=;3005h 2(5) ’P=f|a=—ﬁ (55)

that is, the standard kdv soliton, while at £ <0, a/8 >0 (type I1) the solution (53)
has a trivial (1+1)-dimensional limit U|,_,=0.

So the Miura transformation (3) maps the bounded plane solitons of the mkp-11
equation into the type II (pure {2+ 1)-dimensional) plane solitons of the kp-11 equation
and the singular plane soliton of the mkp-11 equation into the standard (type I) plane
soliton of the Kp-11 equation.

This last property of the map (3) is similar to the property of the (1 + 1)-dimensional
Miura map U =—3V, —3V” which, as has been shown in [11], does not interrelate the
rapidly decaying smooth solutions of the mxdv and kav equations. This is quite clear
from the consideration of the {1+ 1)-dimensional limit of the (2+1)-dimensional case.
Indeed, the (1+ 1)-dimensional limit of the solution (51) (& = —8) looks like

g | _
VmKdV"_'ZSlnh '2¢ <f7=f|a=~3 (56)

that is, the singular solution of the mkav equation while the corresponding limit of
the solution (53) (& = —B) is given by (55). So the (1+1)-dimensional Miura transfor-
mation maps the singular solutions of the mkdv equation into the soliton of the kav

equation.
A similar situation takes place for general multisoliton solutions of the mkp-11 and

KP-1I equations.
(iiy The rational solutions of the mkp.u equation are real-valued in the two

cases [9]
(a) N=2n )‘k+n=xk ‘Yk+n='?k (k=1s"'sn)
(b) arbitrary N Ay =iay (Im a, =0) Yk = Pre

However, all these rational solutions of the mkP-11 equation are singular.
They remain singular after the Miura transformation. In particular, the simplest

singular plane lumps of the mkp-11 equation

20
V_a2/4—(x+2y/a — 121/ e+ x,)°

(57)
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where a is an arbitrary real constant is transformed into the solution

2
(x+2y/a—12t/a’ —a/2+x)*

This is the well known singular solution of the kp.n equation [3, 51. Note that the
singularity line x=-2y/a+12t/a’+ a/2—x, of the solution (58) coincides with a
singularity line of the solution (57).

A similar situation also takes place in the general case. Comparing (24) and (29),
we see that the singularities of the solutions of the xp.11 equation are defined by the

zeros of det A and that these singularities present only part of the singularities of the
solution (24) of the mkr-11 equation.
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