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Abrtrsel. I t  is shown that the classes of  exact solutions with functional parameters and 
rational solutions of the modified Kadomaev-Petviashvili ( ~ K P )  equation and the 
Kadamtsev-Petviashvili ( K P )  equation are connected by the ( 2 +  I)-dimensional Miura 
transformation. The correspondence between mare particular classes of solutions of the 
mKP and the K P  equations via the Miura transformation is established. 

1. Introduction 

The Miura transformation [ I ]  between the modified Korteweg-de Vries (mKdV) and 
the Korteweg-de Vries (Kdv) equations has played an important role both in the 
discovery of the inverse scattering transform (IST) method [2] and in the further 
understanding of the properties of these equations (e.g. see [3-51). It reveals a deep 
interrelation between the algebraic properties of the mKdV and Kdv equatiowand their 
hierarchies [3-51. 

The (2+ I)-dimensional integrable generalizations of the Kdv and mKdv equations 
are given by the well known Kadomtsev-Petviashvili (KP) equation 

(1)  U, + uXx, + 6 uu, + 3u2a;' U,  = o 

V, + V,, -3u2(fV2Vx - V,J;' V, +a;' l'.") = 0 

and the modified K P  ( ~ K P )  equation 

(2) 

which has been introduced within the different approaches in [6,7]. Here n2=&l.  
The m~~ and K P  equations are connected by the (2+  1)-dimensional generalization of 
the Miura transformation. Namely, if the function V obeys the ~ K P  equation (2) then 
the function 

( 3 )  
1 2 2  U = -fu2J;' V,, -fuVy -2u v 

obeys the KP equation [6,7]. Similar to the ( I  + I)-dimensional case the Miura transfor- 
mation (3)  deeply interrelates the algebraic structures associated with the mKP and KP 

equations [8]. 
In the present paper the properties of the classes of exact solutions of the mKP and 

the KP equations under the Miura map (3 )  are studied. We will show that the solutions 
of the m~~ equation (2) with functional parameters are converted under the map (3 )  
into the solutions of the KP equation ( I )  with, essentially, the same functional param- 
eters. The Miura map ( 3 )  transforms the rational solutions of the m K P  equation into 
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the rational solutions of the K P  equation. The interrelation between the plane solitons, 
decreasing and plane lumps, non-singular and singular, real and complex solutions of 
the m~~ and K P  equations are established.'Both of the cases U*= -1 and U'= +1 are 
considered. 

V G Dubrousky and B G Konopelchenko 

2. General formulae 

The classes of exact solutions of the K P  equation, including solutions with functional 
parameters, plane solutions, singular rational solutions and lumps, are well known 
(e.g. see [3,5]). For the ~ K P  equation similar classes of exact solutions have been 
constructed recently in [9]. All the details about the properties of the solutions of the 
K P  and ~ K P  equations can be found in these papers. 

The correspondence between the solutions of the ~ K P  and K P  equations can be 
established directly in terms of V and U with the use of the map (3). But it is more 
convenient and transparent to do  this using the m~~ eigenfunction x. The first linear 
problem for the ~ K P  equation (2) is of the form [9] 

+ *xx +uV$lx = 0. (4) 

The eigenfunction x(x, y, t ;  A )  relevant for the formulation and solving the inverse 
spectral problem for the ~ K P  equation is introduced via [9] 

It obeys the equation 

(6) 
iuV 2i 
h A 

U& +xxx +- x + UVXr +- xx = 0. 

The function x(x, y, I ;  A )  can be canonically normalized (x 
tion formula for the potential V is of the form [9] 

1) and the reconstruc- 

(7)  
2 J  
U Jx 

V(x,y, r)=---lnXo 

where ,yo is the first of the coefficients of the Taylor series expansion o f x  near the origin: 

(8) x(X, Y, 1 ;  A )  = x ~ X ,  Y ,  I )  + AX, (& Y, 1 )  + A'Xz(x, Y ,  +. . . . 
The equations of the inverse problem for (6) have the wide classes of exact solutions 
which give rise via (7) to the classes of exact solutions of the ~ K P  equations [9]. 

Formula (7) is very convenient for the analysis of the Miura map (3). Substituting 
(7) into (3), one easily gets 

XO 

which clearly demonstrates that U is, indeed, the solution of the K P  equation. Moreover, 
using the relation 

uxo,, +xurr +Zix,.+iuVx, +uVxoT.= 0 (10) 
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which arises from the substitution of expansion (8) into (6), one can transform the 
RHS of (9) into the simpler form. Namely, 

This formula gives us a simple way for calculating the solutions of the KP equation 
using the known functions xo and xI for the m K P  equation. 

It is easy to see that the Miura map (3) transforms the real-valued solutions of the 
mKP-I equation ( u = i )  into the complex-valued solutions of the K P  equation ( u = i )  
while in the case U = 1 the Miura transformation (3) connects the real-valued solutions 
of the m K P  and KP equations. The Miura transformation (9) maps the non-singular 
solutions of the mKP equation into the non-singular solutions of the K P  equation. 

3. Correspondence between the solutions with functional parameters and 
rational solutions 

The most general classes of exact solutions of the mKP equations include the solutions 
with functional parameters and rational in x-, y-, 1-solutions. Here we will consider 
the correspondence between them. 

The solutions of the ~ K P  equation with functional parameters are of the form [9] 

(12) 
2 a  

V = -- - In(det AA-') 
U Jx 

where 

and 

,yo = det(2A-') x, = tr( BA- ' )  (14) 

where 

B k l = i J x A k ! = t f k ~ r x .  (15) 

Here &(x ,  y ,  f )  and qr (x ,  y, t) are the solutions of the linearized m~~ equation 

& + tzxv + 3 u2J; '&  ,. = 0 (16) 

of the form 
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where f x ( A ,  h )  and gk(A,  h )  are arbitrary complex functions. The integral a;'  in (13), 
(14) is defined in such a way that RHSS of (13) and (14) exist. 

Now let us apply the Miura transformation to the solutions (12). Formula (1 1) gives 

V G Dubrovsky and B G Konopelchenko 

J tr(A,A-') 
Jx  det(2A-I) 

u=2- 

Note that the matrices .&A-', 1 -AA-'  --A&' and 1 -AA-' have rank one. For rank 
one matrices one has the well known identity 

det(1 +F) = 1 +tr E (19) 

Using (19) and another well known matrix identity, 

J 
-In det F = tr( F,F-') 
Jx 

one gets 

tr(A,A-') - det( 1 +,&A-') - 1 
det(AA-l) - det(AA-') 

= det[l - (1 -AA-' - A&')] -det[l - (1 - A A - ' ) ]  

(21) 
I -  J 

J x  
= tr(A,A-') =- In det 2. 

So we finally obtain the solutions of the K P  equation 

J 2  
U = 2 y h  det 2 (22) Jx 

with the functional parameters, where A is given by (13). Formula (22) after the 
identification 

tY= b Tfp=vkx  (23) 

exactly coincides with the known formula for the solutions of the K P  equation with 
functional parameters (e.g. see [ 3 ] ) .  

The linear parts of the K P  and the ~ K P  equations coincide. So, the same set (up to 
the change (23)) of solutions of the linear equation (16) parametrize the classes of 
exact solutions (12) and (22) of the m~~ and K P  equations, respectively. The Miura 
map (3) connects these classes of solutions without, in essence, changing the parameters 

A similar situation takes place for the rational solutions. The general rational 
CI and 7,. 

solutions of the ~ K P  equation are of the form [9] 

2 J  
V=---lndet(AA-') 

U a x  

where 

A,, = A,, + i A l  
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and 

,yo= det(AA-') x, = i tr( 8A-I) ( 2 6 )  

The Miura map (3) converts the solutions (24) into the following solutions of the 
where & ) = I  ( k / = l ,  . . . ,  N ) .  

K P  equation: 

a tr(8A-I) 
ax det(2A-I)' 

u = 2 -  

Taking into account that the matrices 1 -AA-' - 8k' and 1 -AA-' have rank one, 
and using the identities (19), (20), similar to the previous case, one gets 

(28) 
a 

~ = 2 - t r ( g k ' ) .  
ax 

Finally, using the properties of matrix A (in particular, (A,,q).v = S,,), one obtains 

a2 
ax 

U =  2 7 In det 2 

where A is given by (25), i.e. 

The formulae (29), (30) coincide with the well known formulae for the rational solutions 
of the KP equation (up to A x  --f A;') (see [3]). 

4. Correspondence between particular classes of solutions: the U = i  case 

Now we will consider more particular classes of solutions, including the real and 
non-singular solutions. 

We start with the case U = i(u2 = -1). The real non-singular plane solitons of the 
m ~ ~ - ~  equation are given by formula (12) with [9] 

cl = -2i R,  exp(F(A,)) v x  = -2i exp(-F(X,)) (31 )  

where 

dcfix iy 4it 
F ( A )  = ---+- 

A A2 A 3  
I m R I = O  and 

It is not difficult to show, using (22), that the real non-singular plane solitons of the 
mKP.I equations are transformed into complex non-singular plane solitons of the KP.1 

equation. In particular, the simplest ~ K P - I  soliton [ 9 ]  

8 ( A l / l A 1 * )  sign R 
e"+[e-'+(A,/A,)(sign R )  e l l 2  

is converted into the complex non-singular soliton of the KP-I equation: 

V = -  

8(sign R ) A A ,  
IAr[e-'+(A/A,)e'sign RI2 

U =  (33) 
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where 
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2f= ix(A-' -i-') - ~ Y ( A - ~ -  i-2) +4if(A-' - i-')+lnIRI. (34) 

The well known plane real-valued non-singular solitons of the K P - I  are connected via 
the Miura transformation (3) with the complex non-singular plane solitons of the ~ K P - I  

equation. In particular, the well known one-soliton solution of the KP-I  equation 

is obtained from the complex non-singular soliton 

4A2 1 v,---I 
A l A I 2  [e:'+(i/A) e'] coshf 

of the m ~ ~ . ~  equation, where f is given by (34). 
The solutions of the ~ K P - I  equation of the breather type, constructed in [9] are 

converted by the Miura transformation into the periodic in x- or y-solutions of the 
K P - I  equation. In particular, the complex breather-type solution of the m ~ ~ - ~  equation 
which can be obtained by the technique of the work [9] is of the form 

(37) 
d (1-e'sin 'p/AR)2+(e21/AkA:)(Ak+A: cos2 $0) 

ax 
V =  2i-In 

1+(2  e.',i2/ARlA12) sin ' p + i 2  e"/AkA; 

where 

2ARx 8(Ab -3A~Ay)f  + arg( RA) 
/AI6 

'p =-+ 
1A14 

and R, some complex constant, is transformed into the following real solution of the 
KP-I  equation: 

(39) 

The solution (39) is the real-valued, non-singular solution of the K P - I  equation decreas- 
ing at y + fm,  and has a periodic wave character in x, 1. 

Another complex breather-type solution of the ~ K P - I  equation which can be obtained 
by the technique of [9] is of the form 

where 

'p(Y 1 = Y (5-i) 
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and a, some real constant, is converted by the Miura transformation into 

e.) 
a’ ( U ,  + U’)’ 
16 u,u2 

1 + a  e’cos ‘p+- 

This real, non-singular, periodic in y and soliton type in the (x, 1 )  solution of the K P - I  

equation has been found in [lo]. 

5. The correspondence between the lumps (U =i )  

The KP-I equation possesses real decreasing lumps (see [3, 51) while themKp-i equation 
has both real decreasing lumps and real plane lumps [9]. 

(i) The real decreasing lumps of the mKP-I equation are given by the formula (24) 
with [9] 

where A; ( i  = 1,2,. . . , n )  are arbitrary isolated points outside the real axis and c, are 
arbitrary constants. 

It is not difficult to see that the corresponding rational solutions (29). (30) of the 
KP-I  equation are complex and non-singular. In particular, the real non-singular 
decreasing lump of the ~ K P - I  equation [9] 

where 

2y 121 x = x - - + 7 +  c 
A A  

c=c,+ic,  

is converted into the complex non-singular decreasing rational solution 

of the K P - I  equation. 
(ii) The real plane lumps of the mKP-I equation are given by (24), (25) where [9] 

i A ,  
2 

y, = --+ c, Imc,=O 

They are mapped by the Miura transformation (3) into the complex plane non-singular 
rational solutions of the K P - I  equation. For instance, the simplest plane lump of the 
mKP-I equation 

( i  = 1,.  . . , N) I m A , = O  

2 a  
( ~ - 2 y / a  + 12t/a2+xO)’+a’/4 

V =  (45) 



4322 

where a is an arbitrary real constant is converted to the complex plane non-singular 
lump: 

u = 2  

V G Dubrovsky and B G Konopelchenko 

(46) 

(iii) Finally one can show that the real decreasing lumps of the KP-I equations 
[3,5] are obtained by the Miura transformation (3) from the complex rational non- 
singular solutions of the mKP-I equation. In particular, the complex solution 

a2/4  - (x - 2y/a  + 12r/a2 + x#+ a i ( x  - 2 y / a  + 121/a2+ xo) 
[ (x-2y/a  + 121/a2+x0)'+ a21412 

where 

2y 12t x = x --+i+ c 
A A  

of the m ~ ~ - ~  equation is transformed into 

that is, the well known real decreasing lump of the K P - I  equation [3,5] 

6. The U = 1 case 

In this case the real-valued solutions of the ~ K P - I I  equation are transformed by the 
Miura map into the real-valued solutions of the KP-II equation. 

(i) The real plane solitons of the m ~ ~ . ~ ~  equation are given by the formulae (12), 
(13) with 

where RI, al, p, are arbitrary real constants. It is easy to see that the corresponding 
solutions of the K P - I I  equation are given by (22) with 

which exactly coincides with the formula for the multisoliton solutions of the KP-11 

equation (with a; '+An)  [3]. In particular, the simplest real soliton of the mKP-II 

equation 191 

where 
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is converted into the well known real plane soliton of the K P - I I  equation: 

where 

The function ( 5 3 )  is non-singular not only for those values of parameters (I, p, E ( E  < 
0, m / p > O )  as for the mKP-I1 plane soliton (51) but also for E > O ,  a / p  < O  for which 
the soliton (51) is the singular one. The properties of the KP-II  plane solitons are quite 
different in these two cases. Namely, the soliton ( 5 3 )  at E > 0, a l p  < O  (type I) possesses 
at a = -p  the non-trivial ( 1  + 1)-dimensional limit 

that is, the standard KdV soliton, while at E <O, a / p  2 0  (type 11) the solution ( 5 3 )  
has a trivial (1 + 1)-dimensional limit Ulm=o = 0. 

So the Miura transformation (3) maps the bounded plane solitons of the ~ K P - I I  

equation into the type I1 (pure (2+ 1)-dimensional) plane solitons of the K P - 1 1  equation 
and the singular plane soliton of the mKP-I1 equation into the standard (type I) plane 
soliton of the KP-II  equation. 

This last property of the map ( 3 )  is similar to the property of the (1 + 1)-dimensional 
Miura map U = -iV,-aV’ which, as has been shown in [ l l ] ,  does not interrelate the 
rapidly decaying smooth solutions of the mKdV and Kdv equations. This is quite clear 
from the consideration of the (1 + 1)-dimensional limit of the (2+  1)-dimensional case. 
Indeed, the (l+l)-dimensional limit of the solution (51) (a = - p )  looks like 

that is, the singular solution of the mKdV equation while the corresponding limit of 
the solution ( 5 3 )  (a = -0) is given by ( 5 5 ) .  So the (1  + 1)-dimensional Miura transfor- 
mation maps the singular solutions of the mKdV equation into the soliton of the Kdv 
equation. 

A similar situation takes place for general multisoliton solutions of the ~ K P - I I  and 
KP-II equations. 

(ii) The rational solutions of the mKP-I1 equation are real-valued i n  the two 
cases [9] 

( a )  N = 2 n  A x t n  = X k  Y k + n  = ?k ( k =  I , .  . ., n )  

( b )  arbitrary N AI = i ak  (Im ax = 0) Yk = rr. 
However, all these rational solutions of the ~ K P - I I  equation are singular. 

singular plane lumps of the mKP-11 equation 
They remain singular after the Miura transformation. I n  particular, the simplest 

2a 
V =  

J / 4 -  ( x + Z y / a  - 1 2 t / a ’ +  .“I2 (57) 
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where u is an arbitrary real constant is transformed into the solution 

2 U = -  
( x + 2 y / a  - 121/a2- a/2+x,j2 

This is the well known singular solution of the KP-II equation [3,5]. Note that the 
singularity line x = - 2 y / a +  121/u2+ u / 2 - x o  of the solution (58) coincides with a 
singularity line of the solution (57). 

A similar situation also takes place in the general case. Comparing (24) and (29), 
we see that the singularities of the solutions of the KP- I I  equation are defined by the 
zeros of det A and that these singularities present only part of the singularities of the 
solution (24) of the ~ K P - 1 1  equation. 
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